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problems 
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Ahtrack. A new variational method for determining the gmund-state energy of quasi-10 
systems is proposed. The method wnsists of decomposition of a lattice into non-interacting 
blocks. A Uial wavefunction is the product of exact ground-state block fudctions multiplied by 
operator wrrelation factors. The ground-state energy of a spin-; and f d o n i c  particle ladder 
is evaluated. The calculaUhn is very simple and gives energies with an accuracy of about 2% 
or e w n  less. 

1. Introduction 

There bas been much interest in low-dimensional, strongly correlated electronic systems 
and quantum spin models in recent years. There is general agreement that .these models are 
the basis of various theories of high-& superconductivity [l]. 

Exact solutions of these models are known for the ID case only. Even an investigation of 
the ground state of qUaSi-1D and 2D models is a rather complicated problem. Many different 
methods, such as exact diagonalizations of finite clusters [26], Monte Carlo simulations 
[7-101, perturbation theory [I 11 and the renormalization group approach [3,12-15], are 
used to study these systems. The accuracies of these methods are very different. For 
example, the real-space renonnalization or spin-wave theory used to calculate spin systems 
gives energies. as a rule, with an accuracy of  10%. More exact estimations are obtained 
by the Monte Carlo method. However, the quantum Monte Cklo simulation suffers from a 
‘negative-sign problem’ and requires a huge computing time. On the other hand, a finite- 
size study needs the use of an extrapolation procedure which is rather uncertain. Variational 
wavefunctions ( W s )  are powerful tools for investigating interacting many-body systems, 
and many fypes of VWF [I61 bave been proposed. One of the most well known is the RVB 
wavefunction [17], which gives the energy to witbin 5%. More exact variational estimations 
[ I81 demand complicated computer calculations. 

Therefore the problem of the construction of a rather simple and reliable vwp i s  very 
important. 

In  this paper we propose a new type of VWF which allows us to estimate singlet 
ground-state energies with an accuracy of  1-2% and even more exactly by means of simple 
calculations. 

This approach is based on the decomposition of the system into blocks (clusters) with 
a singlet ground state. The VWF is a product of exact cluster wavefunctions multiplied by 
a product of correlation factors imitating their interactions. This function can he used both 
for infinite systems and for finite systems. 
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Figure 1. The decomposition of the chain into dimers. The dashed lines denote the correlation 
factors. 

The main object of our consideration is the so-called ladder models which are 
intermediates between one- and two-dimensional systems. At present, such systems are 
interesting from experimental and theoretical points of view [4,19-221. For example, a 
spin-; Iadder may be realized in nature by vanadyI pyrophosphate ((V0)2P207). It is 
proposed [4] that it might become a superconductor under bole doping. On the other 
hand, the fennionic ladder model with a strong interaction between electrons has interesting 
magnetic properties [Z]. 

2. Variational approach 

As a first example we consider the S = f Heisenberg linear chain 

B= J C S i . S j .  
i 

Let us divide it into dimers as in figure 1. The ground state of each dimer is, of course, a 
singlet with an energy -:.I. We choose the ground-state VWF in the form 

where 

and ~ ( i )  is the ground-state wavefunction of the ith dimer: 

1 
P(i) = - - ( I 4  - 18a)). Jz 

The correlation factor T2-l,a is an operator which is taken as 

T2nt1.2" = 1 -I- M S 2 n t l  . s, (3) 

where M is a variational parameter. All factors in equation (2) commute with each other. 
The ground-state energy E is 

E = {YHY)/(YY). 

First we calculate an overlap N = {YY). For its calculation we use the obvious equations 

(Sdo = 0 (SZ.-I . S2n+l)O = -$ (4) 

where the expectation values were evaluated with respect to YO. Using equation (4) the 
overlap N can be obtained trivially (similar to the calculation of a partition function of the 
1D Ising model) and N becomes 

N = h 4 + 3 h i  (5) 
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where 

hl(~) (1 +&U') A,(cY) = - p ( l -  1 4.) 
and L is the number of dimers. Equation (5) holds for a cyclic chain and for a chain with 
free ends if the second term is absent. As lh~/11[ < 1 for all values of a, so for L + 03, 

N = A: 

The calculation of E is reduced to the calculation of the expectation values (Sb-1 . S,) 
and (Sb-1 - S~+I) .  To find them it is convenient to use the relation 

(1 +~Sj-Sj)Sj.Sk(l+~rSi.Sj) =fi(~r)Sj.Ssx+fi(a)Sj.S~ (6) 

where 

f1(a) = 1 - &a' = U-4. 
Using equations (4) and (6) we obtain 

(Sb-i . 4 n )  - ~ h f - ' f ~ ( ~ )  (Sb . &+I) = -zh, 3 L-1 hz(a). 

Then 

E = -qL[(f,(a)/hl(a))Z +~zQ)/h(a)l .  (7) 

The minimization of E with respect to a is reduced to a quadratic equation and ad" = 
(8 - 44%)/9 = -0.7136. The energy E = E/2L per site is 

E = -0.43683. ( 8 )  

This differs by 1.4% from the exact result [23] E = -0.4431 J .  In  view^ of the extreme 
simplicity of calculations the result obtained i s  in very good agreement withthe exact value. 

At first sight it seems that it is possible to improve the result by taking four-site clusters 
(we must divide the chain into clusters with an even number of sites to obtain the singlet 
ground state). In this case the trial wavefunction has the form 

where 'y, is the product of exact ground-state wavefunctions of separate clusters. The 
calculations lead to the result 

E = -0.4363 J .  

The result obtained is not better than (8). Thus, an increase in the cluster size does not 
necessady improve the accuracy, at least for the chain. 

Now we consider spin ladder model (two coupled spin chains). The ladder Hamiltonian 
is 

where Si is the spin-4 operator at site i and the first and the second terms describe spin 
interactions along and across the chains. 

The first 
corresponds to decomposition of the ladder into vertical dimers and the product of the 

 we^ consider some versions of the trial wavefunction of the type (2). 
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Figure 2. The decompasitian of the ladder into dimen. The dashed lines denote the correlation 
factors. (0) and (b)  correspond to two versions of the VWF. 

correlation factors is chosen in accordance with figure Z(a), where the dashed lines denote 
@e factors F j .  

The calculation of the overlap N and the expectation values (S iS j )  can be made by 
analogy with the ID case. The ground-state energy per site for the isotropic case J = JI 
is E = -0.5561 J. Even this simplest version of Y gives an energy slightly better than 
short-range RVB approximation (ERVB = -0.55605 [3,24]). This result can be improved if 
we choose the VWF in the form shown in figure 2(b), i.e. 

Y = T I ~ T Z ~ T ~ ~ T ~ . .  .Yo. (10) 

However, in this case the calculation of E differs from previous results and we dwell upon 
this subject in some detail. 

We start with the calculation of the overlap N .  We consider the ladder of size L and 
represent the &id wavefunction in a form 

Y L  = TIBTx~o(I)YL-~ 

where Yo(1) and Y L - ~  are the wavefunctions of the first dimer (exact) and the rest of the 
ladder. It is easy to show that 

(1 1) 2 NL = W L ~ L )  = A ~ ( ~ ) N L - I  -4~%)(S3 .s4)~-i 

where the expectation value (...)'-, is evaluated with the wavefunction YL-I. It follows 
from equation (11) that 

Equations (12) and (13) allow us to find X L  and yr. by a recursive method beginning with 
x1 and yI . In particular, it turns out that for L = 2 (a square) these equations lead to the 
exact value E = -fJ (J = J I ) .  
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Equations (15) and (16) have a fixed point at L + 00 when X L  -+ x and y~ -+ y :  

- f?(a) - ([A:@) - f,”(a)I2 + 12A:(a)f:(a)11’2 

8A:W (14) 
Y =  

x = A:(a) - 4g(a)y .  

The ground-state energy at L -+ 00 is defined by the expectation values (Sh-1 . S&+I)L 
and . SZ,)L when n + w. This average satisfies recurrence equations as well. For 
example, for the first of them we have 

P L ( ~ )  = aLpL-I(n) +bLgL-l(n) gdn) = C L P L - I ( ~ )  +QgL-l(n) (15) 

where 

P L @ )  = (SZ.-I . S~+I)L/NL 
aL = A?(E)/XL bL = - 4 A ; ( a ) / x ~  C L  = -3 f : ( a ) / 4 x ~  dL = f i ( a ) / x L .  

When L -+ CO, aL -+ a, p ~ ( n )  + p(n) ,  p ~ - l ( n )  -+ p(n  - l), etc. equations (15) reduce 
to 

(16) 

gL(n) = ((Si . SZ)(%.~-I - S ~ I I + I ) ) L / N L  

p(n)  = ap(n - 1) + bg(n - 1) g(n) = cp(n - 1) + dg(n  - 1) 

with the initial conditions 

p ( 2 )  = (SI . S ~ ) L / N L ,  g(2 )  = ((si . &)(%. SS) )L /NL 

The equations for limiting values u(n) and u(n), where 

= (%.,-I . SZJL/NL = ((Si . S~)(~Z,-I . SZJ)L/NL L +’ 00 

have the same form as equations (16). The solutions of equations (16) are 

A n )  = A i d  + Az& g(n)  = A 3 4  + (17) 

where pl,p~satisfy the equation 

p2  -p(a  + d )  + a d  - b c  = 0 

Taking into account equation (14) it is easy to show that p1 = 1 while 

= a(a) +d(a)  - 1 < I 

This means that p ( n )  (u(n)) and g(n)  (u(n))  tend to constants when n -+ 00 as they 
should do. The second terms in equation (17) are end effects. (For the cyclic ladder, ail 
p ( n )  = A l . )  Thus, p ( n )  -+ A1 and AI is 

p ( 2 ) [ d ( a )  - 11 - g(2)b(a) A1 = 
a(a)  +d(a )  - 2 . ~  ’ 

The ground-state energy 8 per site is 

The initial values ~ ( 2 ) .  g (2) ,  u(2) and u(2) can be found from equations which are 
analogous to equations (12)<14). For example, 

u(2) = [fl%)Y - : f ; ( a ) l ( X ) - ’ .  
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Minimizing equation (18) with respect to U, we arrive at 

V Ya Krivnov andA A Ovchinnikov 

E = -0.57401 amin = -0.55 (19) 

for J = 11. This value differs by 0.7% from the value E = -0.578 J obtained in [3,6] by 
the extrapolation of numerical calculations of finite clusters. 

One more version of VWF corresponds to decomposition of the ladders into squares 
(figure 3): 

where Yo is the product of the exact singlet ground-state wavefunctions of separate squares. 
We note that all the factors qj commute with each other, in contrast with the preceding 
version. For J L  = 0 the wavefunction-(20) coincides with a product of two 1D wavefunctions 
(2). The ground-state energy can be found by the recursive procedure by analogy with the 
preceding. However, it is easier to act somewhat differently. Let us consider a cyclic 
(in a long direction) ladder. Then we need three types of expectation value, making the 
contributions (S3 .S4), (SI .S3) and (S3.5’5) to the ground-state energy. Using the fact that 
all factors Zj commute with each other, it is possible to represent, for example, (4 . Sa) 
as 

(21) 

where YL, (L’ = L - 1) is the wavefunction of the ladder with free ends. We note that 
the correlation factors in equation (10) do not commute with each other and their order in 
equation (10) cannot change. 

(YS3.54W = (YL,, T3sTa6S3. S ~ T ~ ~ S Y L , )  

2 4 6 8 10 

1 3 5 1 9 
Figure 3. The decomposition of the ladder into squares. 

Using equation (6) it is possible to represent equation (21) in the form 

( Y s 3 .  s4Y) = .f:(U)(s3 ‘ s 4 ) L ‘ +  .f2z(a)(s5 ’ s 6 ) L ’ + f l ( U ) f i ( U ) [ ( s 4  ’ s 5 ) L ’  f (4 s6)L’l. 

(22) 

The last term in equation (22) vanishes when L --f CO while (S3 . S ~ ) L ,  and (S5 &)L’ 
are expectation values of scalar products corresponding to the lirst and the last squares of 
the ladder with free ends. It is evident that (S3. S~)L, = ( 5 ’ 5 .  S 6 ) L ’ .  These expectation 
values can he found in a manner analogous to the way that it was done in the derivation of 
equation (14). The same method can be used to calculate the expectation values (SI .S3) 
and (4. S5). 

As a result we obtain for the energy per site in the isotropic case 

E = -0.57411 = -0.52. (23) 

This value almost coincides with E from (19). 
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Table 1. Vxiational and extrapolated 161 results for the ground energy per site of spin ladder. 
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J i I J  amin EIJ D/J).,u Error(%) 
0.0 -0.714 -0.437 -0.443 1.4 
0.2 -0.721 -0.443 -0.453 22 
0.4 -0.733 -0.461 -0.472 2.3 
0.6 -0.691 -0.492 -0.500 1.6 
0.8 -0.601 -0.530 -0.535, 0.9 . ,  

1.0 -0.520 -0.574 -0.578 0.7 
2.0 -0.271 -0.858 -0.859 0.1 

We also calculate the ground-state energies for different values of the anisatropy 
parameter J J J  in the range 0 < JL /J  < 2. These data are presented in table 1 together 
with estimates obtained by extrapolation of finite-size calculations in 161. It is seen from 
table 1 that differences between our data and the extrapolated data do not exceed 2.3%. 

Up to this point our treatment has pertained to spin systems. However, this approach 
can be genedized without difficulty to Fermi systems. As an example, we consider a ladder 
described by the Hubbard Hamiltonian with U = 00: 

where ( i j )  denotes nearest neighbours and the operators a; are connected with the original 
Fermi operators c z  by the relation 

The magnetic properties of this model were studied by us 1221 in the framework of the 
auxiliary-space approach. In particular, it was shown that the ground state is a singlet at 
p = 1 ( p  is the number of electrons per site). Below we shall obtain a variational estimate 
of thi energy of this state. 

We decompose the ladder into squares as in figure 3. The VWF is chosen as 

Y = (1 + mT35 + U46)(1 + mT79 + aTs.10) . . . Yo (25) 

where YO is a product of the exact ground-state wavefunctions of squares, containing two 
electrons (this guarantees that p = 4) and 

Since the correlation factors commute with each other, it is possible to calculate the 
expectation values (Td,  TI^) and (T35). which are contributions to the energy, using 
formulae of the type (21). 

For the (2 x 4) ladder the calculation gives the energy E per site as -0.736t compared 
with the exact result E = -0.74% [25]. The error is 1.6%. For L +, CO we obtained 
E = -0.771t. The exact value of E is unknown. An extrapolation of the results of exact 
diagonalizations 125,261 of a ladder with L = 2,4,6 using an asymptotic form 

b c  
~ = a + - + -  

L L2 

gives E = -0.78%. 
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3. Summary 

Our considerations have shown that the proposed VWF gives a good accuracy (about 2% or 
less) of the singlet ground-state energy of ID and qUaSi-ID ladder systems. In any case, these 
estimates are better than obtained by the short-range RVB ansatz. It should be stressed that 
the calculation based on the proposed approach is very simple, especially if the version of 
the VWF with commuting correlation factors is used. This approach can be easily generalized 
to more complicated models than defined by equation (1) or (24). For example, it is possible 
to consider the models with not only nearest-neighbour interactions andlor for other than 
the s = spin vahe. 

Unfortunately, its application to 2D or 3D systems meets difficulties. For example, 
expectation values of the type ((Si . Sj)(Sj * S,) . . . (SI .Si)) appear when we calculate the 
energy and it is necessary to sum the contributions of these averages, beginning and ending 
at the same cluster. In this connection it is worth noting that the value of ]cumin[, as follows 
from table 1, reduces from 0.71 for a chain to 0.52 for a ladder. This confirms a decrease 
of about Iaminl for systems of higher dimensionality. This indicates the possibility of using 
perturbation theory in a. This problem needs further investigations. 
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